Inorganic Application Note

Determination of Sulfur in Ore Concentrate

LECO Corporation; Saint Joseph, Michigan USA

Instrument: CS844, S844

Introduction

The following application note outlines the setting and steps required to determine the sulfur level in ore concentrates with the CS/S844. The sulfur level of the concentrate can be used as a quality control measure to determine the efficiency of the concentration process and provide an estimate of the metal-in-concentrate. With its wide sulfur detection range and easy-to-use touch-screen interface, the CS/S844 sulfur by combustion analyzer makes the perfect addition to any mining operations laboratory.

Sample Preparation

Samples should be crushed to a uniform powder prior to analysis.

Accessories

528-018 or 528-018HP Crucible; LECOCEL II (502-173 or 501-008); 502-231 Iron Chip or 501-077 Accelerator; 773-579 Metal Scoop; 761-929 Tongs

For optimal sulfur precision, ceramic crucibles can be pre-baked in a muffle oven at ≥1000°C for a minimum of 1 hour, or tube furnace (LECO TF1/TF-10) at ≥1250°C for a minimum of 15 minutes. The crucibles are removed from the tube furnace/muffle oven, allowed to cool, and are then transferred to a desiccator for storage. Baked crucibles must be handled with clean tongs only to avoid contamination.

Calibration

502-085 Zinc Sulfide Reference Material or other suitable ore concentrate reference materials.

Method Parameters

General Parameters

Purge Time: 10 s Delay Time: 20 s Sample Cool Time: 0 s Furnace Mode: Constant Furnace Power: 100% Element Parameters Sulfur Integration Delay: 0 s Starting Baseline: 2 s **Use Comparator:** No 55 s Integration Time: Use Endline: Yes **Ending Baseline:** 2 s Range Select: Auto Range Lower Limit: 800 Range Upper Limit: 950

Procedure

- Prepare instrument for operation as outlined in the operator's instruction manual.
- 2. Determine the instrument Blank.
 - a. Login a minimum of three Blank reps.
 - b. Add one 773-579 Scoop (~1.2 g) of LECOCEL II and one 773-579 Scoop (~0.8 g) Iron Chip.
 - Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable), and initiate analysis.
 - d. Repeat steps 2b through 2c a minimum of three times.
 - e. Set the blank by following the procedure outlined in the operator's instruction manual.
- 3. Calibrate/Drift Correct
 - a. Login a minimum of three standard/drift reps.
 - b. Weigh ~0.15 g of 502-085 Zinc Sulfide reference material or other suitable calibration/drift material into the crucible and enter the mass and identification of the reference material.
 - Note: Alternate calibration use \sim 0.05 to \sim 0.20 g for multi mass calibration linear (three reference material reps @ each mass).
 - c. Add one 773-579 Scoop (\sim 1.2 g) of LECOCEL II and one 773-579 Scoop (\sim 0.8 g) Iron Chip.
 - d. Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable) and initiate analysis.
 - e. Repeat steps 3b through 3d a minimum of three times for each calibration/drift reference material intended for calibration/drift.
 - f. Calibrate/drift correct by following the procedure outlined in the operator's instruction manual.
- 4. Sample Analysis
 - a. Login a sample with appropriate number of reps.
 - b. Weigh ~0.05 to 0.20 g of ore concentrate sample into the crucible and enter the mass and identification.

Note: Maximum instrument range is 60 mg sulfur.

- c. Add one 773-579 Scoop (~1.2 g) of LECOCEL II and one 773-579 Scoop (~0.8 g) Iron Chip.
- d. Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable), and initiate analysis.

Typical Results

./ 6104111000110		
Sample	Mass (g)	% Sulfur
502-085	0.0508	32.62
Zinc Sulfide	0.0498	32.99
32.91% Sulfur	0.0503	32.98
	0.1012	33.12
	0.1024	32.95
	0.1000	33.02
	0.1513	32.79
	0.1493	33.01
	0.1520	32.84
	0.2001	33.60
	0.2006	33.28
	0.2020	33.61
	Avg =	33.0 <i>7</i>
	s =	0.30
CCU-1c	0.0515	33.56
Copper Concentrate	0.0523	33.59
33.3% Sulfur	0.0490	33.32
	0.1025	33.71
	0.0997	33.58
	0.1000	33.29
	0.1506	33.63
	0.1496	33.34
	0.1511	33.23
	0.2011	33.32
	0.1998	33.25
	0.2003	33.40
	Avg =	33.44
	s =	0.17

